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ABSTRACT 

rhis report presents two simplified methods to estimote the test criteria of primary structures 
at component attachment points subjected to broadband random acoustic excitations. The 
current method utilizer a constant smeared component mass attenuation factor across the 
frequency range of interest. The newly developed method indicates that the attenuation 
factor is based on a frequency dependent ratio of the mechanical impedances of both the 
comporwnt and primary structures. These procedures to predict the structural responses are 
considered as the present state-of-the-art and will provide satisfactory prediction 
results. Example problems were used to illustrate the application procedures of these two 
methods and to compare the significant difference. It was found that the lower test criteria 
can be obtained by the Impedance ratio method and this is due to the results of considering 
the effects of component/primary structure interaction. 
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FOREWORD 

The work reported herein was supported by the National Aeronautics and Space Administration, 
Marshall Space Flight Center, under Contract N o . NAS8-30630 during the period of 
March 12, 1974 through September 30, 1974. Technical monitoring of the program was 
provided by Mr. J . Herring of the Aeroelastic and Acoustic Response Branch, Structural Dynamics 
Division, System Dynamics Laboratory, Marshall Space Flight Center, Huntsville, Alabama. The 
Principal Investigator was Dr. Kumg Y . Chang, Senior Research Specialist, Wyle Laboratories, 
Huntsville, Alabama. 

The work performed consisted of the developmenf and illustration of the impedance rotio 
concept. Efforts were also made to evaluate the impedance ratio concept and the constant 
mass attenuation method with structural example problems. The computation of input impedances 
of component and primary structure were based on nomograms and design charts developed under 
Contract N o . N AS8-25811 . 
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1.0 INTRODUCTION 

Research in seeking practical techniques or methods for predicting vibration environments of 
space vehicles subjected to random acoustic pressure has gained considerable attention in 
recent years. As a result, sevfcal methods and techniques have been developed for dynamic 
environment predictions. Of thase methods, Barrett (Reference 1) used a standardized 
approach to predict vibro-acoustic environments with sufficient conservatism to meet design 
and test requirements. This approach or so-called constant mass attenuation method is based 
upon the fact that similar structures have similar response characteristics but do not account 
for the component-primary structure coupling effects and the characteristics of frequency 
variations. However, It does provide a means to estimate the response of highly complex 
structures with only a few simple computations. Other methods such as described in References 
2 and 3, utilize mechanical impedance concepts to predict broad frequency range vibration 
criteria. The impedance method was derived from a one-dimensional mathematical 
model and the prediction equation Is expressed in terms of four types of parameters at com
ponent mounting locations. These parameters cnsist of input impedance of primary structure, 
input impedance of component package, acoustic mobility and blocked pressure spectrum. 
The predicted environments obtained from this method hove been shown to be accurate and 
conservative within acceptable tolerance limits. 

The objective of this report Is to present the above two prediction methods and to compare 
their predicted results. A description of these methods is presented in Section 2 . 0 . In 
Section 3 .0 , the approximate equations used to compute the four impedance parameters for 
the Impedance prediction equation are described. The approximate equations were further 
converted into nomograms and computation charts and the resultants, and Its application 
guidelines are given In Section 4 . 0 . In Section 5 . 0 , example problems are used to demon
strate the application procedures and to compare the difference of these two methods. 
Finally, a summary of the mechanical Impedance method and the concluding remarks are 
described In Section 6 .0 . The development of the impedance prediction equations are 
described in detail In Appendices A, B and C. 
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2.0 METHODS FOR PREDICTING ENVIRONMENTS 

2.1 Constant Mass Attenuation Method 

The equation for predicting the vibration environment of acoustically susceptible structures 
is (Reference 1): 

(2.1) 

where: G - the vibration response of the new vehicle structure at a 
particular location. The term G is the acceleration due 
to cyclic motion divided by the acceleration of gravi ty. 
Since rocket vehicle vibrations contain many frequencies 
the response magnitude (G) Is specified in mean square 
spectral form. 

G = the known vibration response of a reference vehicle 
structure. This velu'3 has been determined by measurements 
and Is also presented on a spectral basis. 

h = the thickness of the skin associated with G , 
r r 

p = the skin weight density of the reference structure. 

p = the impinging acoustic presstre which is driving the 
reference structure. 

h = the skin thickness associated with G 
n n 

p = the skin weight density associated with G 
•^n o / ^ 

p = the acoustic pressures impinging upon the new vehicle 
structure. This pressure must be predicted. 

F = a factor which accounts for the attenuation effects produced 
by incorporating additional mass into the existing system. 

The "bove equation applies to random rms composite values or to sinusoidal values. The 
coi. -pt used to derive this equation Is based on the assumption that similar structure 
exhibits similar dynamic characteristics. Once the frequency and amplitude characteristics 
of a typical type of structure have been adequately defined, these results may then be 
uti l ized as a basis for predicting the vibration environment of like structures. 

2 



The foregoing equation Is opplicoble to localized vibratory environments and is valid for 
all materials. It is Invalid when considering large sections of vehicle structure ( i . e . , entire 
cylindrical tank). However, the static loading of these large sections is the critical design 
factor and localized dynamics thereby produce only negligible effects. 

In Equation (2.1), the expression indicates that for a constant driving power the structural 
response decreases as the weight density Increases. For an Item of component to be mounted 
on the structure in which the vibration environment has previously been defined, the 
vibration responses will be decreased by a factor of F. Therefore, the loaded response spectra, 
G , of the structure with component attached can be expressed as: 

= G 
W 

w +w 
n c 

(2.2) 

w here: W effective weight of primary (support) structure. 

W - component weight. 

When determining the effective weight of structures, the radial distance should not exceed 
three times the distance between rings. This Is because the dynamic characteristics of thin 
plates remain essentially constant above aspect ratios of three. In the preliminary develop
ment period, the weight of the basic structure or component may not be known and the attenua
tion factor Is considered as unity. This will result in an estimate of the vibration environment 
which may tend to be conservative. 

2.2 Impedance Ratio Method 

The response prediction equation Is derived based on a one-dimensional structural model. 
By applying Thevenlns' and Norton's theorems to this model, the relationship between the 
unloaded and loaded response spectra is obtained and can be shown to have the following 
expression (References 2 and 3): 

0*(u) = « M 
Z (̂u,) 

Z^(«)+Z|_(u) 
(2.3) 

where: 0 ' (u) - Power Spectral Density (PSD) of loaded response spectrum. 
a 
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0 (u) - PSD of unloaded structural response spectrum. 
17 

Z (u) = Input Impedance of primary support structures. 

7 (w) = Input impedance of component package. 

u - Frequency parameter. 

An analytical approach to compute the unloaded response spectrum has been established 
(Reference 4 ), and the equation Is given as follows: 

0 (o) - 0 (u) • a((j) ^ (2.4) 
a p 

where: 0 (u) - Blocked sound pressure spectrum. 
P 

a(u) - Acoustic mobility of the structure. 

The derivation of Equations (2.3) and (2.4) is presented In Appendix A . Equation (2.3) 
shows that the loaded response spectrum Is equal to the response spectrum of the 
unloaded structure multiplied by the ratio of the Impedances. The term I Z (u) / Z (u) + 

Z u) serves as a magnification factor for both the unloaded and the corresponding loaded 

spectra and its value w i l l approach unity when the structural Impedance, Z (u), becomes 

inf in i te . The Impedances expressed In Ec<;jatIon (2.3) can be obtained directly from measure
ments on the actual structure. Nevertheless, all of the above quantities can be obtained through 
analytical prediction techniques. The equations and guidelines for predicting the input 
Impedance and unloaded response spectra of structures are presented In the subsequent sections. 
The computation of the loaded response spectrum is illustrated by an example problem as described 
In Section 5.0 of this report. A flow chart indicating the computation sequence Is shown In 
Figure 2.1 . 
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3.0 IMPEDANCE DESIGN EQUATIONS 

3.1 Prediction of Structural Impedances 

Input impedances, Z (u) and Z (u), in the impedance ratio equation are specified In terms 

of the "force/velocity" format. Input impedance of component package, xu^/, ' c'afined 
as an Ideal damping, spring and mass system, and is described in Append • l i t Tht '; imory 
support structures considered herein consist of basic cylindrical shells, longitudinal srringers 
and ring frames. The cylindrical shells are stiffened by stringers in the oxia' direct ion, and 
ring frames are attached inside the shell wa l l . The directioii of vibratory respons-. under 
consideration Is referred to as that normal to the skin which is excited by impinging acoustic 
pressures. The stiffeners are not directly excited by acoustic forces but are driven by the 
motion of adjacent panels. The approximate equations for predicting the input Impedance of 
these three structural components have been reported in detail in Reference 4 and are briefly 
summarized in Appendix C. For the sake of completion in the presentation, this report encom
passes all the pertinent equations from the reference necessary to compute the Input Impedance 
of structures. The approximate equations are given in Table 3.1 in three different frequency 
ranges as defined below (Reference 5): 

• Low freqi ncy range or frequ'^ncles below the fundamental 
freauency of the shel l , 

• Intermediate frequency range, and 

• High frequency range or frequencies above the ring 
frequency of the shel l . 

The evaluation of the stiffened shell Impedances, Z (u), is then obtained for the above 

three frequency ranges as follows: 

Low Frequency Impedances — The static stiffness is the predominant factor which 
influences the input impedance. Due fo the lack of theoretical expressions for input 
impedances of stiffened cylindrical shells, it is assumed that at low f'equencies the input 
impedance at any location follows the stiffness l ine, this stiffness being equal to the summa
tion of the stiffness of the Indlviduol structural elements that ore present in that location. 
Two cases are considered in this frequency range, namely: 

• If the stiffness of the ring is small in comparison to the stiffness of the 
stringer or the unstiffened shel l , the overall stiffness can be computed 
by adding the stiffness of the properly modeled structural elements 
that are present at the input location, as follows: 
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K = K̂  + E KB ^ ^ "̂R ^^''^' 

w here: 

K - static stiffness of shells 
s 

K = static stlf Iness of beams or stringers 

K = static stiffness of rings 
K 

Thus the input impedance of a stiffened cylindrical shell at low frequency 
follows a stiffness line whose value can be computed from the sum of stiffnesses 
of structural elements at that point. 

For a stiffened cylindrical shel l , if rings are sufficiently stiff in comparison 
with the entire shell, these rings act like the boundary of structure panels. 
Then the characteristic impedance j f the shell can be determined from the 
length of the spacing between two adjacent rings. 

K̂  + E Kg (3.2) 

The characteristic Impedance represents the impedance of a sfr of such 
a length that reflections from the boundaries are negl igible, li ,r words, 
the resonance modes of a sfrucfure with ony non-dissipotlve bour.Jjry conditions 
are identical to the resonance modes of a supported structure whose length Is 
equal to the distance between the node lines. 

Intermediate Frequency Impedances — Within the intermediate frequency range, 
which extends from the fundamental frequency to the ring frequency, the input impedances of 
the test specimens can be evaluated as the combination of the characteristic Impedances of the 
primary structural components. The equation is written as: 

z = z + L Z + E ^ P (3.3) 

where: Z - characteristic Impedance of shells 
s 

Z - characteristic impedance of stringers 
B 

Z = characteristic impedance of rings 
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High Frequency Impedancias — The Input Impedance of a stiffened shell at high 
frequencies depends on the location of a measurement point and Is evaluated by the following 
rules: 

• Unstiffened (skin) Point — The input impedance approaches that 
of an infinite plate of the same thickness. 

• Stiffened Point — The skin and the stlffener(s) decouple dynamically 
at high frequencies, therefore, the Input Impedance approaches that 
of the stlffener(s). 

• Stiffened Intersection Point — The Input impedance at the centers of 
short stiffeners segments are generally higher than those of longer 
stiffener segments; and the Impedance at an Intersection of the 
stiffeners is approximately equal ro the sum of the Individual Impedances 
of the two stiffeners — the ring impedance and stringer Impedance. 

3.2 Prediction of Acoustic Mobil i ty 

Acoustic mobil i ty, a(u) , is defined as the ratio . r the mean-square spectral density of the 
velocity to the mean-square spectral density of the fluctuating pressure driving the structure. 
This quantity Is expressed by Equation (3.4) as follows: 

S . ( ( j ) 

a(u) - -~-j (3.4) 

P 

where S.(u) has units of ( in./sec) / H z , and S (u) is the blocked pressure spectral density 

having units of (psi) / H z . The blocked pressure includes the effects of reflection and thus 
accounts for the pressure doubling effect when an object Is immersed In a random pressure f ie ld . 

Generally, the acoustic mobility for a given structure would be calculated based u.^ci modal 
analysis or statistical energy analysis. However, for the purposes of presenting sin.plified 
design techniques, empirical curves may be used for defining acoustic mobl l l iy . The develop
ment of these empirical curves from a broad range of available vibro-acoustic data is described 
In detail in Appendix C of Reference 4 . Only the main results wi l l be presented in this report. 
The basic design curves for acoustic mobility are shown in Figure 3.1 for two values of 
damping: Q = 20 and Q = 200. In this figwre, the normalized acoustic mobility derived 
from the measurements is expressed as: 

(3.5) 
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and has units of (in./sec)^ /\r\} The abscissa of this figure is fD, i . e . , frequency times 
cylinder diameter in units of Hz - in. 

In order to use the empirical curves of Figure 3 . 1 , an estimate of the structural damping, 
Q , must first be obtained. Then by stustituting for vehicle diameter, D, and surface 

weight, m, the acoustic mobility S. / S (or a ) ma/ be determined as a function of 
u p 

frequency, f H z . For structural Q values other than those shown in Figure 3 . 1 , the 
acoustic mobility term may be interoolated since an increase in Q by a factor of 10 
results in on increase in the acoustic mobility term of one decode. 

3.3 E\'qluotion of Blocked Pressure 

The blocked pressure spectrum, 0p(u), is defined as the effective acoustic pressure acting 

on a primary structure. The pressure is equivalent to that acting on a rigid cylinder which 
has the identical geometrical dimensions as the piimary structure. This pressure con be 
determined from the far-field sound pressure measurement and is given by (References 6 and 
7): 

= V ^ = 4(,rkR)-2. « 
K] 

00 

-2 H' (kR) 
m 

(3.6) 

where: I P, I - measured sound pressure levels without the presence 
'- J of flexible structures 

k = wove - 27rf /c 

c = speed of sound In acoustic medium; for air 
c = 13,400 in ./sec 

R = radio's of cylinder = D/2 

€ - Neumann factor = 1 for m = 0, 2 for m > 0 
m 

H' (k R) = derivative of Hankel function of order, m 
m 
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The foregoing equation is derived from on infinite panel and does rK>t account for diffraction 
effects of structures with finite ler^th. However, the error due to diffraction effects is 
considered as insignificant and will not influerKe the final results. In the frequency range 
of interest, the rms blocked sourKl pressure is approximately 40 percent higher than the 
measured sour>d pressure and such a conversion factor generally leads to conservative 
estimates of rtie force spectra. 

The curve representing the expression of Equation (3.6) versus fD is shown in Figure 3.2 
and can be used to evaluate the blocked pressure spectra on the surface of cylinders in a 
reverberant acoustic environment. 
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4 . 0 C O M P U T A T I O N CHARTS A N D GUIDELINES 

In order to minimize manual efforts in performir>g resportse computations, it is necessary 

to reduce the derived equations described in Section 3 . 0 into the form of nomograms or charts 
so that lengthly computations can be avoided. 

Al l equations in Table 3.1 contain a frequency dependent and a frequency independent terms. 
Therefore, by evaluating the frequency independent term, and later, combining with the 
frequency dependent term, the impedance curve can be easily constructed. The approaches, 
which ore based on the separation of the frequency dependency to simplify the Impedance 
prediction, are presented below, 

4 .1 Nomographic Charts 

A nomograph. In its simplest and most common form, is a chart on which one con draw a 
straight line that w i l l intersect three or more scales in values that satisfy an equation or a 
given set of conditions. The equations summarized in Table 3,1 were converted Into 
nomographic forms, and ore shown in Figures 4 ,1 through 4 . 6 . Figure 4 .1 evaluates the 
static stiffness of the ring frame. By knowing the values of radius, R, and the f lex ib i l i ty , 
E I , of the r ing, and connecting these two values on the R scale and the EI scale with a 
straight l ine, the Intersection point in the K scale represents the computational result of 
the given equation. 

Figures 4 , 2 and 4 . 3 perform similar computations for static stiffness of beams and the 
frequency independent part of beams and ring frames which Is defined as: 

2 V^p* [JAY '"•" 

Figure 4 . 4 Is a four-variable type nomogram for evaluating static stiffness of unstiffened 
cylinders. By using one additional axis, T, which lies between the / and R axes and need 
not be graduated, the equation was broken into two three-variable equations and are handled 
as the preceding way, i . e . , connecting the i scale and the R scale with a straight l ine, 
then joining the Intersection point on the T axis and the h scales with another straight l ine, 
the Intersection point on the K scale Is the resulting value. 

Figure 4 .5 Is used to evaluate the frequency independent part of the shell impedance as 
defined below: 

Zf = - r ^ P^'AI^ ( - 1 (4.2) 
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Figure 4 . 6 is used to evaluate the infinite plate impedance, Z , according to the expression 

shown in Table 3.1 . 

4 . 2 Charts for Computing Structural Impedance 

The impedance of an ideal damping, spring and moss system may be represented by three 
intersection lines. By using this approach, the driving-point impedance for beams and rings 
based on the equations of Table 3.1 were represented by two sets of intersection lines varying 
with the frequency as shown in Figure 4 . 7 . In this figure, the line representing the proper 
stiffness value is obtained either from the result of Figure 4 .1 or 4 . 2 for rings and beams, 
respectively, and the line defining the proper Z value of the structure is determined from 

Figure 4 . 3 . TSe stiffness lines represent the Impredonce at low frequencies and the Z lines 

represent the impedance at high frequencies. The intersection of these two lines determines 

the fundamental resonant frequency of the structural system. In this figure and the following 

figures, a scale factor is used to obtain correct scale values for the standard diagrams. 

The driving-point impedance for unstiffened cylindrical shells is shown in Figure 4 , 8 , where 

the Z lines are replaced by the Z , lines. The lines represented the proper stiffness, Z , and 

Infinite-plate Impedance ore obtained from Figures 4 . 4 , 4 . 5 and 4 . 6 , respectively. At low 
frequencies, the impedance of cylinders follows a stiffness line and at high frequencies the 
Impedance is equal to the impedance of an Infinite plate which has a constant value. Within 
the intermediate frequency range, the Input impedance may be represented by the Z , l ine. 

The fundamental frequency and the ring frequency of cylinders ore determined by the Inter

section of these three characteristic lines. 

The impedance of the stiffened cylinder Is equal to the I' ear summation of these component 

curves and is obtained in the following manner: 

• The logarithmic summation chart (LSC) shown on the upper portion 

of these charts w ' l l be used to compute the linear summation of 

two impedance cur .'es. 

• At any frequency point, measure the difference of two Impedance 
values and use this length as the abscissas value In the LSC. 

• The ordinate corresponding to the abscissas In the LSC is the resulting 

value for these two curves in logarithmic summation. 

• Add the length of the ordinate to the upper impedance curve, the 
resulting curve denotes the linear combination of these two 
impedances. 
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Figure 4 . 9 represents the impedance lines for the component pockoge which ore defined as on 
ideal damping, spring and mass system. The graph shown on the upper portion of this computa
tional chart wi l l be used to compute the logarithmic ratio of two impedance curves. The 
application of the LSC Is similar to the procedure as described before except that the length of 
the ordinate obtained from the LSC is subtracted from the lower impedance curve. The usage 
of the LSC is demonstrated In Section 5 . 0 . 

4 . 3 Charts for Computing Blocked Pressure 

The conversion of a far- f ie ld sound pressure spectrum into a corresponding blocked pressure 

spectrum is achieved by multiplying the far-f ield pressure spectrum by the correction 

coefficient, 3 , as shown in Figure 3 , 2 . To obtain the * / J -coefficient for a particular 

cylinder in the frequency scale, it is accomplished by shifting the fD scale in Figure 3 ,2 to 

the left for the amount corresponding to the cylinder diameter, D . For example, if the diameter 

of a cylinder is 48 inches, the \ 3 -coefficient for that cylinder is obtained by shifting the 

fD scale by a factor of 48 to the left , as shown by the -y 3 -curve In Figure 4 . 1 0 . The blocked 

pressure spectrum of the far- f ie ld pressure spectrum is then obtained by adding the x/ 3 length 

values at each frequency point to the far-f ield sound pressure. 

4 . 4 Charts for Computing Response Spectrum 

The unloaded response spectrum Is obtained by the product of the blocked pressure spectrum 

obtained from Figure 4 . 1 0 , and the velocity acoustic mobil i ty. The normalized acoustic 

mobility curves as shown in Figure 3.1 must be converted to I a I versus frequency format 

for use In response computation. The conversion can be accomplished graphically by shifting 

the abscissas scale to the left corresponding to the diameter of a cylinder, D; and shifting 

the ordinate scale upward or downward corresponding to the quantity (m/D) . For example, 

by applying the abov2 procedures to an aluminum cylinder with D = 48 Inches, Q = 2 0 , 

and (m/D) = 3 .34 x 10" l b / i n . , the acoustic mobility for the cylinder is obtained and is 

shown In Figure 4 . 1 1 . The unloaded velocity response spectrum Is obtained by summing up 

Icjarlthmically the velocity acoustic mobility curve and the blocked pressure spectrum as 

xplalned in Figure 4 .11 . 

The Impedance ratio and the unloaded response spectrum obtained from Figures 4 . 9 and 4 . 1 1 , 
respectively, are again plotted on a new computation chart for final computation. This chart 
has the same form as Figure 4 . 1 1 . At any frequency point the sum of these two curves shown 
on the chart is the resulting loaded response spectrum for the design structural system. 

Note that al l charts developed in this section are in same length scale and the transfer of data 

curves from one chart to the next chart can be easily done by overlay technique. Example 

problems to illustrate this simplified technique to predict vibratory environments for space 

vehicles are explained In detail In the following section. 
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5 , 0 EXAMPLE PROBLEMS FOR COMPARISON 

To aid in understanding the computation procedures and to compare the results of these two 
prediction methods described in Section 2 . 0 , example problems are illustrated in this section. 
The specimen used In the prediction consists of a basic cylindrical shel l , four longitudinal 
stringers and two circumferential ring frames. The basic cylindrical shell has overall 
dimensions of 9 6 . 0 I n . (length) x 4 8 . 0 I n . (diameter) x 0 .08 i n . (thickness). A l l structural 
elements were made of aluminum. The ring frames are built-up channel sections which ore 
attached to the inside surface of the shell wall by means of rivets; and, the stringers are 
angle sections which are similarly attached to the outside surface of the shell w a l l . The 
dimensions of the curved panels formed by the stiffeners were 3 2 , 0 inches and 37 .7 inches. 
Two heavy end rings consisting of angle sections were welded to the inside surface at the 
two ends of the shell wa l l ; and, thick circular plywood bulkheads were bolted to the end 
rings, and ore used to provide radial constraint at the ends of the shell w a l l . Its structural 
configuration Is shown In Figure 5 .1 . Overal l dimensions of the cylindrical structure ore 
listed in Table 5.1 . Details of structural configuration and corresponding test results con be 
found in Reference 5 . 

The computations of static stiffness, Z and Z . for the primary structure components hove 

been evaluated previously as shown In Figures 4 .1 through 4 . 6 . The Impedance computations 
for the configuration with two ring frames and four stringers are illustrated in Figures 5 . 2 and 
5 . 3 . In the computation, it was assumed that these two rings act like end bulkheads with 
high structural rigidity so that the effective length of cylinder becomes the length of the 
middle segment which is equal to 32 inches. In Figure 5 . 2 , the Impedance for one stringer 
and four stringers are plotted based on the values obtained from Figures 4 . 2 and 4 . 3 . 
Similarly, the impedance curve representing the unstiffened cylindrical shell Is plotted In 
Figure 5 . 3 , In which the impedance representing the sum of four stringers is also shown, 
except that at high frequencies where the structural system decouples dynamically and the 
Impedance approaches that of one stiffener only . In Figures 5 .2 and 5 . 3 , the plotting scale 
is 10 times the correct value as indicated by Factor = 0 . 1 . Based on the procedure of the LSC 
as described in Section 4 . 2 , the Impedance of the stiffened shell which Is equal to the linear 
summation of these two component impedances is obtained and is also shown In Figure 5 . 3 . 
Figure 5 . 4 shows the measured Impedance data from Reference 5 along with the computed 
Impedance for comparison. Generally speaking, the comparison is considered quite satisfactory 
both In low frequency and high frequency ranges. Fair agreement is also observed for frequen
cies just below the ring frequency. Some discrepancies are observed In the intermediate 
frequency region. Such discrepancies are attributed to the errors Incurred In summing the 
impedances of the stringers. Further refinements In predicting techniques to achieve a higher 
degree of accuracy In this frequency range are needed. However, it may be concluded that 
the equations and guidelines outlined in Section 3 . 0 are adequate for determining the structural 
impedances for design purposes. 

The simulated component package consisted of a 1/2 inch aluminum plate with lateral 

dimensions of 8 . 0 I n . x 8 . 0 I n , The plate was supported by four sets of leaf springs at its 

corners. The bottom of each spring was fitted with a load washer assembly. The total we'ght 

of the component package was 3,81 pounds; the resonances of the package were measured at 
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n o Hz and 1200 H z , respectively. The latter frequency is the fundamental resonance of the 

1/2 Inch plate . Detailed descriptions of the structural configurations con be found in 

Reference 3 . 

The impedance of the component package was estimated and is presented in Figure 5 , 5 The 

predicted impedance for the stiffened cylinder is also shown in the some figure. These two 

impedance curves ore combined to form the combined impedance curve according to the 

procedure as described in Section 4 . 2 . The curve shown on the bottom of Figure 5 . 5 

represents the length difference between the component impedance and the combined impedance 

at any frequency point. The resulting curve given is the Impedance ratio term in the computation 

of the loaded response spectrum. 

The blocked sound pressure and the acoustic mobility shown in Figures 4 . 1 0 and 4 . 1 1 , respectively, 

were adopted to this example problem and the unloaded response spectrum Is the vector sum of 

these two curves, and Is also shown in Figure 4 . 1 1 . 

Based on the Impedance ratio shown in Figure 5 . 5 , the unloaded response spectrum of Figure 
4 ,11 Is converted into the loaded response spectrum. I . e . , by summir^ these two individual 
curves. The final computation was performed on Figure 5 , 6 , and the resulting test criteria 
is shown by the dashed l ine. 

As discussed previously, the loaded response spectrum for this example problem can be obtained 
by the constant mass attenuation method. The equation for predicting the loaded response 
environment, G , of a component on the cylindrical structure is described In Section 2 .1 . 
Thus: 

/ W 

\ n c 

In which these parameters were obtained as follows: 

W = 0.1 X (32 X 37 .7 X 0 .08) = 9 .65 (lb) 
n 

W = 3.81 (lb) 
c 

Substituting the calculated values Into Equation (5.1) results in: 

G = 0 .72 G (5 .2 ) 
e n 

14 



Now, the resultant response environments, G , can be obtained by multiplying the ratio, as 

Indicated by 0.72, by the unloaded response spectrum of Figure 4 , 1 1 , Results of this 
computation along with the predicted response spectrum obtained by the Impedance ratio 
method ore presented in Figure 5,7. Note that this figure can also be used as the conversion 
chart to convert the acceleration PSD into velocity PSD and vice versa. The velocity response 
is read-off from the vertical scale of the left-hand side and the acceleration response is read-
off from the right-hand side. As can be seen from this figure, predicted response obtained 
from the constant mass attenuation method is much too high in the Intermediate frequency 
range (40~400 Hz), i . e . , the vibration criteria established by this method, which ignores 
effects of component/primary structure coupling may provide too much conservatism to satisfy 
design and test requirements and there is a strong possibility that the specimen would be over-
tested under such criteria. This method Is valid only when the impedance of a primary 
structure Is sufficiently higher than that of the attached component. 

15 



6.0 SUMMARY AND CONCLUSIONS 

Two simplified methods were used to predict the loaded response spectrum of a component and 
its support structure (space vehicle) which is subjected to broadband random acoustic excitations. 
The newly developed method was derived from a one-dimensional impedance model and the 
computation is performed by way of nomograms and design charts. These techniques presented 
herein ore considered Indicative of the present state-of-the-art and will permit satisfactory 
environmental estimates of highly complex requirements with minimum amount of manual 
computations. However, the lower test criteria con be obtained by the impedance ratio 
method and this is due to the results of considering the effects of component/primary structure 
interaction, 

A summary of the computation procedures of the impedance ratio method is presented below 
in outline form for quick reference. 

STEP 1: Determine and compute the geometrical and material 
properties of cylinders and their components. 

STEP 2: Evaluate the parameters of structural impedances of 
primary structural components, employing Figures 
4.1 through 4 . 6 . These ipedances are summed In 
accordance with the guidelines described In Section 
3.1 by using Figures 4 .7 and 4 . 8 . 

STEP 3: Estimate the impedance of the component package and 
construct the component impedance curve by Figure 
4 . 9 . This curve is combined with the impedance curve 
obtained from Figure 4.8 to form the impedance ratio curve. 

STEP 4: Determine the blocked pressure spectrum by means of the 
chart OS shown in Figure 4 .10 . The unloaded response 
spectrum is computed by utilizing the chart as shown 
in Figure 4 . 1 1 , or the response spectrum may be obtained 
from the experimental measured data. 

STEP 5: Plot the unloaded response spectra and the structural 
impedance on the some chart. The loaded response 
spectrum for the design system is obtained by summing 
these two individual curves. 

16 
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TABLE 5 . 1 . SUMK«ARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES 
OF CYLINDER AND ITS COMPONENTS 

Property 

Mean Radius, R 

Overall Length, i 

Shell Skin Thickness, h 

Cross-section Area, A 

Moment of Inertia, I 

Weight per Unit Volume, p 

Modulus of Elasticity, E 

Weight per Stiffener • 

Total Weight of Structure 

Weight for Unit Surface 

Dimertsion 

(in.) 

(!n.) 

(!n.) 

(in?) 

( inf) 

(lb/in?) 

(Ib/in.2) 

(lb) 

(lb) 

(lb/in? ) 

Structural Items | 

Ring 

23.0 

144.5 

215 

. 15 

0.1 

10' 

3.10 

Stringer 

96.0 

0.123 

0.012 

0.1 

10^ 

1.18 

Shell 

24.0 

96.0 

0.08 

0.1 

10' 

116.0 

126.92 

8.7673x10'^ 

* Two rings spaced at 32" in the longitudinal direction and eight longitudinal 
stringers spaced at 18.8" in the circumferential direction. 
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1 . Two flat circular plywood bulkheads 
2 . Two angle secHon end rings 
3 . Four angle section stringers 
4 . Two channel section ring frames 
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Figure 5.1 . Geometry and Dimensions of Cylindrical Structure 
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APPENDIX A 

DERIVATION OF IMPEDANCE PREDICTION EQUATION 

1.0 INTRODUCTION 

The one-dimensional force-spectrum equation is derived based on Thevenin and Norton's 
theorems (Reference 1). The equation relates the driving force spectrum to external excitation 
forces, component impedances and dynamic properties of support structures (input impedances and 
acoustic mobilities). In the subsequent sections, equations which govern the force spectrum of 
a one-dimensional structural system ore presented. The relationship between this system and its 
analogous vibro-ocoustic systems are then established and measurement approaches ro acquire 
needed data ore described. 

1.1 One-Dimensional Impedance Model of a Structural System 

It is assumed that dynamic responses of a structural system subjected to excitations by external 
forces ore predominantly one-dimensional; thus the dyrximic characteristics of the structure 
could be represented by a one-dimensional impedance model as shown In Figure A - 1 , in which 
the basic unloaded structure is replaced by on equivalent structural "block box"; external 
loads ore applied at Terminals 1 and 2, and component packages which are treated as load 
impedances, Z (u), are attached to Terminals 3 and 4. The corresponding velocities and 

interaction forces at the attach .lent points are indicated by V (u) and F, (u), respectively. 

The structural impedance model, as shown in Figure A-1 , can be represented by the equivolert 
constant-force model (Thevenin's model) and the constant velocity model (Norton's model) as 
shown in Figures A-2 and A-3, respectively. The dynamic characteristics at the attachment 
points (Terminals 3 and 4) ore represented by Z (u), which is defined as support-structure 

impedance or source impedance. That is, the Impedance looking back to the left of Terminals 
3 and 4 without any loads attached. 

Based on Figure A-2 , the force, F (u), which drives the component Z. (u), con be expressed 
by the following equation: 

Where F (u) Is the equivalent driving force (blocked force) developed at Terminals 1 and 2 if 
0 

the load impedance at the attachment points (Terminals 3 and 4) were Infinite, i . e . . If Terminals 
3 and 4 were fixed to a rigid foundation. The corresponding velocity V (u) of the attached 
load is: 

A-1 



F M 
v,(u) = ^ . .\y r\ ^̂^ 

L Z , (u) + Z (u) 

Bu^ t̂ he blocked force F (u) is not o readily measuroble quantity, therefore, it is necessary 
0 

to find an equivalent term which is suitable for measurement. 

By definit ion, the constant source velocity, V (o), is the velocity at the attachment terminal 
0 

with fKJ loads attached. Thus, by setting Z (u) in Equation (2) to zero, the source velocity 

is determined by the following equation: 

F (u) 

0 Z (u) 
s 

or 

F (u) = V (u) • Z M (4) 
0 0 s 

Substituting Equation (4) into Equation (2) , and the resulting equation for load velocity V. (u) 

becomes: 

V"' = \ ' " ' - [ I .Z^ ( . ) /Z^M] '5> 

Equation (5) shows that the load velocity spectrum is equal to the velocity spectrum of the 
unloaded structure multiplied by the impedance ratio of the support structure to the component 
package. The term l / [ 1 + Z (u) / Z (u) ] serves as a magnification factor and its value 

w i l ' approach unity when the source impedance Z (u) becomes inf ini te . Al l of the above 

quantities can be obtained through measurement techniques. 

1 .2 Structural Responses to Acoustic Excitations 

Responses of structures to acoustic excitations, as shown in Figure A - 4 , can be expressed by 

the following equations (Reference 2 ) : 
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0 „ ( r ) ^ ( r ) . A= 
m n 
Z (o) Z (u) * 

m m m n o 
* i ' ^ " ' - E E ; M Z " M ' *P <"» c <"> <*> 

where 

0 . (T , (j) = Velocity power spectral density at point r 
X 

0 (o) = Power spectral density of reference sound pressure which is assumed 

'̂ O to be constant over the surface of component mounting locations 

A - Surface area 

Z (u) - Modal impedance 

K 
m 

i u 
1 -

> m / m ' m / 

Z (u) * = Complex conjugate of Z (u) 
n 

J ~ (u) ~ Joint acceptance function of the n\n mode 
mn 

/ / 

^ _ ( s ) 0 ( s ' ) 0 ( S , $',u,) 
d s ds' 

A^ 4> (u) 
• P 

s S ^0 

d s, d s' = Infinitesimal orea vectors 

• ( s, s', u) = Cross-power spectral density of the sound pressure field 
P 

0 ( r ) , 0 (s ) = Normal mode at r and $ , respectively 
m m 

K = Generalized stiffness 
m 

u = m natural frequency = *! K / M 
m ^ ' If m m 

M = Generalized mass = / p ( s ) ^ ( s ) d s 
m J ^ 

s 
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m 
Generalized dynamic magnification factor 

Surface mass density 

By rearranging terms in Equation (6), the acoustic velocity mobility is obtained: 

a. (r, u) 2 
• ^ ( r , u ) 

* p («-) = EE 
d ( r ) * ( r ) - A ' 

m n 
Z (u)Z (u) 

m n m n 
J M u ) 
mn 

(7) 

In practice, velocity responses of a complex structure subjected to acoustic excitations may be 
expressed as follows: 

0 . ( r, w) = 0 (r, u) 
x p a^(r, u) (8) 

where 0 (r , u) is the blocked sound pressure spectrum at 7*. 
P 

To determine the acoustically induced response spectra 0 (7^ u) at attachment points, 

it is necessary to transform o vibro-ocoustic system to an equivalent one-dimensional impedance 

model, so that Equation (5) con be applied directly to determine 0 . ( r , u). Such a transfor

mation is illustrated in Figure A-5 . The equivalent one-dimensional model is represented by 

a support >...uctural impedance, Z (r , u) , the component impedance, Z. (7^ u) , and an 

equivalent blocked force spectrum, 0 (7) u). Applying Equations (4), (5) and (8) to the 

above system, the blocked force spectro equation is obtained: 

Blocked Force Spectra: 0 (r, u) = 0 , ( r , w) Z (r, u) 
s 

(9) 

and the load velocity response spectra is presented as follows: 

0. (7, u) = 0 (T, u) ' 
X p 

a. i r] u) 
x 

1 

. 

i+Zj_(i^u)/z^(7;u,) 
(10) 
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Figure A - 1 . One-Dimensional Impedance Model of a Structural System 

Figure A-2 . Equivalent-Constant Force Model 
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Figure A-3 . Equivalent-Constant Velocity Model 
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Figure A - 5 . One-Dimensional Model of a Structural System Subject to 
Acoustic Excitations 
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APPENDIX B 

IMPEDANCE OF PAYLOAD STRUCTURE 

The Payload structure can be assumed as o lumped-moss system. The mathematical model is 
shown in Figure B-1 arxJ the differential equations of motion con then be written as: 

Mx + C(x - y ) + K ( x - y ) = 0 

(1) 

C ( x - y ) + K ( x - y ) = - F e iut 

in which M represents the total moss, K is the stiffness, and C denotes the damping of the 
system. The frequency of the steady-state motion is the same as the force excitation frequency, 
u , therefore, the mechonicol impedance of the system is obtained os follows: 

wi here 

Z = Fe 
lut 

T 
i u M 

l U 

= i wM • tm 

I u 

!4)-i{^ 

u = 
0 

Q = 

\ K/M = resonance frequency of undamped system 

^KM/C = dynamic magnificent factor 

(2) 

For the region, u « u , Equation (2) can be approximated by: 
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Z :» ! u M (3) 

Equotion ( 3 ) shows that the impedance is a purely moss line. For the region, u » u , it 

is passible to obtain an approximate formula for the impedorKe and this approximation yields 
the following impedance formula: 

Z = 
K 

i u 
1 + T5 ©1 = C + 

I U 
(4) 

At high frequencies, the impedance became asymptotic to a constant value and ' ; equal to the 
damping value. 

Z ^ C (5) 

A typical example of the component impedance plot is shown in Figure B-2 as a function of the 
frequerKy of the driving force. The approximated curve is also shown in the some figure for 
comparison. 

B-2 



M J ' 

K l-t-IC 

ft Fe 
lUt 

Figure B-1. Mass-Spring — Doshpot Model 
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/ \ . 
\ 

Equation (3) 

Moss Line 

• • « • • « • • • • • • « • • « •I 
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Figure B-2. Impedance of Component Package 
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APPENDIX C 

APPROXIMATE EQUATIONS RELATED TO 
DYNAMIC CHARACTERISTICS OF STRUCTURES 

Brief discussions of approximate equations on input impedances, resorrant frequencies and modal 
densities are given in this appendix. The structural elements considered in the derivation 
consist of the following categories: 

• Beams (or stringers), 

• Circular ring frames, and 

• Unstiffened cylindrical shells. 

The derivation of the approximate equations is based on the assumption that the thickness of 
cylindrical shells is small such that the thin shell theories are valid and the direction of 
vibratory response under consideration is referred to as that normal to the skin. The evaluation 
of the input impedances may be subdivided Into three different frequency ranges as below: 

• Low frequency range or frequencies below the fundamental 
frequency of the shell, 

• Intermediate frequency range, and 

• High frequency range or frequencies above the ring 
frequency of the shell. 

Beam (or Stringer) Impedances — The static stiffness of a beam defines the input 
impedance at treauencies below the fundomental resonant frequency of the beam. The static 
stiffness at the mid-length point of o simply supported beam Is given by: 

K = 4 8 l i -
/ ' (1) 

where 

E - Young's modulus of elasticity 

I = moment of Inertia of stringer cross-section 

/ = effective length of stringer* 

* Note: If the distance ( , between two adjacent supports Is different from the entire length 
of a stringer, the stiffness should be computed in according to the shortest support 
distance. 
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Then the input impedance is obtained as: 

Z = K/ lu (2) 

where 

u = circular frequency 

The fundamental resonance frequency of the beam con be computed from the following equation: 

^(tjvw \ = 7^ (^\ fir (3) 

where 

p = mass density 

A = cross-section area of stringer 

At high frequencies or frequencies above the fundamental frequency, the overage input imped
ance con be approximated as the characteristic impedance of on infinite beam and is given by 
Cremer (Reference 1) as follows: 

Z = 2 ( l ^ i ) p A ( ^ y V^ (4) 

The impedance curve defined by the above equation is represented by the line that passes 
through the points of inflection of the impedance curve as shown In Figure C-1 . The peaks 
end valleys are proportional to the damping coefficient, Q , and are located above or below 
the average impedance line; their amplitudes. In respect to the average impedance line, 
decrease with increasing frequency and the order of reduction in relative amplitudes Is 
(.roportionaI to 1 / ^ u . The equation used to compute the ratio of peak values is defined 

^Peokl ^ ^ . r r 1 / E I \ " » Q 
Z ..r'^m"§ 
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Ring Impedances — The in-plane static stiffness of a simply supported rir̂ g is given 
by (RefererKe 2): 

K = - J i (6) 

0.15R^ 

where 

I = moment of inertia of ring cross-section area 

R = median radius of ring 

However, the low frequency response of a free ring is associated with rigid-body motion which 
is along the moss line in the impedance plot and is given by: 

Z - I u M (7) 

where M is the total moss of the ring and is expressed as: 

M = 2;r pRA 

A = cross-section area of ring 

The lowest resonant frequency of the fundamental mode of rings is defined as follows: 

f, = 0.427 -L J l l (8) 

at frequencies above the fundamental frequency, the impedance curve approaches the impedance 
of an infinite beam whose value is given by: 

Z = i 2 V2 pA | ~ l V" (9) 2V?pA[il]''>F 

Similarly, the peak responses at resonance frequencies are proportional to structural damping 
and its peak/average ratio is obtained as: 
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rptiM . , IT 1 fEi 1''' o 

The impedance curve obtained from the approximate equations is illustrated in Figure C-2 
along with the analytic solution. 

Shell Impedances — The static input stiffness of a simply supported cylindrical shell 
defines the input impedance at frequencies below the fundamental resonant frequency of the 
shell. The static point Input stiffness at the mid-length of a cylindrical shell can be estimated 
by the following approximate formula (Reference 3): 

, n V /2 I u \ M 

K = 2.50 Eh ( j - ) ( y ) (11) 

where 

h = thickness of shells 

R = radius of shell 

/ = effective length of shell 

E = Young's modulus of elasticity 

The fundamental frequency of a thin shell with simply supported ends is 

C, , , M , 'L =- 0.375 -L (^^Y 02) 

w here 

C, ~ speed of sound in shell wall 

4 P ( 1 - i ' ^ ) 
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and 

p ~ moss density 

V - Poisson's ratio 

At high frequencies, the impedance becomes asymptotic to a constant value and is given by 
the expression: 

Z ^ -±r ph^ C, (13) 

which is identical to the impedance of a semi-infinite plate of width TTR . The frequency for 
which the corresponding mode shape shows no dependence on the axial direction is defined as 
the ring breathing frequency. The equation used to compute the ring frequency Is given by: 

Within the intermediate frequency range, which extends from the fundamental frequency to the 
ring frequency, the Impedance curve can be approximated by the straight line which joins two 
points representing the input impedances at the fundamental frequency and the ring frequency, 
respectively. The expression which describes this Impedance curve was derivoted and Is 
expressed below. 

= ^ ph' cJ-^yV^ (15) 

An alternate theoretical method employing the concept of the model density can also be used 
for estimating the Impedance at Intermediate frequencies. The modal density of a structure is 
defined as the average number of resonant frequencies that occur within a unit frequency band. 
The inverse of the modal density is equal to the average separation between resonant frequencies. 
Heckle (Reference 4) derived a closed form expression for the modal density of a uniform cylin
drical shell using a simple approximation to the frequency equation; and these expressions ore 
used to obtain the overage separation between resonant frequencies (see also Reference 5) as 
follows: 
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and the input impedance can be opproximoted by the followii^ equation (Reference 6 ) . 

|Z| = I - • 27rAf • M^ 

J ^ PH' Ĉ ^ /^l^ „7, 

in which M represents the modal mass and is approximotely equal to one-quarter of the toic! 
m 

mass of shell. 

Comparison of Equations (15) and (17) shows that the theoretically derived expression in 
Equation (15) Is essentially the same result as the empirical equotion obtained by T tting the 
desired curve. A comparison of the resulting Impedances Obtained either from the approximate 
and analytical equations is shovn in Figure C-3. 
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Figure C - 1 . Comparison of Design Equations with the Analytic ' i l o t i on 
for the Impedance of Beam-Type Structures 
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Aluminum Cylinder 
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Figure C - 3 . Design Equations ond Anolyticol Solution o^ Input Impedance 
at Mid-Length of an Unstiffened Cylinder 
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